The Andrew & Erna Viterbi Faculty of Electrical Engineering

- Computers
- Communication

Beyond phasors: Modeling dynamic events in large power systems

presented by Dr. Yoash Levron Department of Electrical Engineering Technion IIT **Energy Challenges**

21st century: A growing demand for energy is expected

How long can science and technology support this rate of growth ?

Our increasing energy consumption changes the earth

Climate Change

the Greenhouse Effect is considered a primary cause of global warming.

Measured outcomes:

- Concentration of carbon dioxide in the atmosphere is rising.
- Earth average surface temperature is rising.
- Weather patterns are changing.

Depletion of Natural Sources

Peak Oil: Are we before or after the peak ?

Global Energy Potential

Renewable Energies - Challenges

Renewable Energies - Challenges

Power Density

How much power is produced per square meter ?

* typical numbers

How much area is required to power the world ? (with nothing but solar photovoltaics)

How much area is required to power the world ? (with nothing but solar photovoltaics)

Today– Centralized Power Systems

- Few large power plants
- Efficient & economic law of scale
- Easy to manage and control

The Future? Distributed Power Systems

- Renewable energy sources are naturally distributed over large areas
- How does one control many independent sources, and make them work as a system ?

Centralized Power Systems - Structure

Distributed Systems: Structure ?

From Centralized to Distributed Power Systems

Today's Grid: Centralized Topology power flows from central power plants to loads

From Centralized to Distributed Power Systems

Today's Grid: Centralized Topology power flows from central power plants to loads

Future Grid: Distributed Topology ?

How will power flow ?

From Centralized to Distributed Power Systems

Many Challenges:

- How do we control this network?
- How do we design it ?
- How do we synchronize the elements to work together ?
- How does energy flows in such a network ?
- Is the network stable ?
- Is it reliable ?
- Is it efficient ?

Future Grid: Distributed Topology ?

"Smart" Grids

The missing link: Information Technology

Power networks that are integrated with advanced capabilities of sensing, communication and control

Today Centralized "Passive" grids The future - "smart" grids ? Power networks combined with information networks

Distributed Generation – Challenges

Distributed Generation – Challenges

Energy Storage

Studying Dynamic Events in Large Systems

The Nonlinear Dynamics of Power Systems

Why use two types of signals ?

- The generators & loads are nonlinear in voltages & currents.
- The network is nonlinear in powers, magnitudes and phases.

In both cases, the system is high-dimensional & nonlinear.

Common Types of Dynamic Models

Transient Models

Fully detailed models, based on differential equations High accuracy & High complexity

Network **Differential equations** $\frac{\mathrm{d}}{\mathrm{d}t}x = f\left(x,I\right)$ $V = g\left(x,I\right)$ load generators

load

load

Phasor Models (Static)

Represent the system in steady-state using phasors Only applies in steady-state, system dynamics ignored

Quasi-Static Phasors

"Time-varying Phasors"

Main idea: assume that phasors vary "very-slowly" in comparison to 50/60 Hz, and use them to model dynamic events.

Modeling – Open Challenges

What we know today:		Simplicity (Low-Complexity
 Static models – Used most often 	Phasor Models (Static)	
 Transient models complex dynamics in small systems 	Quasi-Static Models	
 Quasi-static models - simulations of large power 		
systems.	Accura	acv

From static to dynamic phasors

In balanced & static systems:

$$v^{a}(t) = \sqrt{2} |V| \cos(\omega_{s}t + \delta)$$

$$v^{b}(t) = \sqrt{2} |V| \cos(\omega_{s}t - 2\pi/3 + \delta)$$

$$v^{c}(t) = \sqrt{2} |V| \cos(\omega_{s}t + 2\pi/3 + \delta)$$

time-domain

$$V = |V| \angle \delta$$

a-b-c reference frame

phasor

From static to dynamic phasors

Using few trigonometric identities:

$$v^{a}(t) = \sqrt{2} \underbrace{|V| \cos(\delta)}_{\operatorname{Re}\{V\}} \cos(\omega_{s}t) - \sqrt{2} \underbrace{|V| \sin(\delta)}_{\operatorname{Im}\{V\}} \sin(\omega_{s}t)$$

$$v^{b}(t) = \sqrt{2} \underbrace{|V| \cos(\delta)}_{\operatorname{Re}\{V\}} \cos(\omega_{s}t - 2\pi/3) - \sqrt{2} \underbrace{|V| \sin(\delta)}_{\operatorname{Im}\{V\}} \sin(\omega_{s}t - 2\pi/3) + V_{s} \underbrace{|V| \sin(\omega_{s}t - 2\pi/3) + V_{s} \underbrace{|V| \sin(\omega_{s}t - 2\pi/3) + V_{s}$$

$$v^{c}(t) = \sqrt{2} \underbrace{|V| \cos(\delta)}_{\operatorname{Re}\{V\}} \cos(\omega_{s}t - 2\pi/3) - \sqrt{2} \underbrace{|V| \sin(\delta)}_{\operatorname{Im}\{V\}} \sin(\omega_{s}t - 2\pi/3) + V_{s} \underbrace{|V| \sin(\omega_{s}t - 2\pi/3) + V_{s} \underbrace{$$

From static to dynamic phasors (cont.)

In matrix form:

$$\begin{pmatrix} v^{a}(t) \\ v^{b}(t) \\ v^{c}(t) \end{pmatrix} = \begin{pmatrix} \cos(\omega_{s}t) & -\sin(\omega_{s}t) & 1 \\ \cos(\omega_{s}t - 2\pi/3) & -\sin(\omega_{s}t - 2\pi/3) & 1 \\ \cos(\omega_{s}t + 2\pi/3) & -\sin(\omega_{s}t + 2\pi/3) & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2} \operatorname{Re}\{V\} \\ \sqrt{2} \operatorname{Im}\{V\} \\ 0 \end{pmatrix}$$

$$\lim_{\delta \to \infty} \frac{|V|}{\delta}$$
Re

Quasi-static phasor :

$$V(t) = \operatorname{Re}\left\{V(t)\right\} + j\operatorname{Im}\left\{V(t)\right\}$$

Modeling with Dynamic Phasors

Here is a simple example:

quasi-static model

$$V = jX_L I = j\omega_s LI$$

Or,

$$\operatorname{Re}\left\{V\left(t\right)\right\} = -\omega_{s}L\cdot\operatorname{Im}\left\{I\left(t\right)\right\}$$
$$\operatorname{Im}\left\{V\left(t\right)\right\} = \omega_{s}L\cdot\operatorname{Re}\left\{I\left(t\right)\right\}$$

Modeling – Symmetric Three-Phase Series Load

• Complete model of a three-phase series R-L load:

$$Z = r + j\omega L$$

Modeling – the Synchronous Generator

- Model based on the *swing equation*.
- Corresponds to a variable-frequency voltage source.
- Synchronous impedance (Z_s) is not included.
- More detailed models are available in the literature.

Modeling – Photovoltaic Three-Phase Inverter

- Model of a typical power electronics inverter.
- Power factor is unity (zero reactive power)
- Model based on energy balance in the internal *bus capacitor*.

Low Complexity Dynamic Models

Quasi-Static Model (zero order Taylor series)

First-order model (first order Taylor series)

- More accurate, yet
- Simple & Linear

Numerical Results

118 bus system, active power of several generators

```
quasi-static model
```

First-order model (solid)

Numerical Results

57 bus system, active power of several generators

quasi-static model

First-order model (solid)

quasi-static model: stable first-order model: unstable

(which model is correct?)

Numerical Results

Simulation Run-Time, ms/s

	3 bus network	9 bus network	30 bus net.	57 bus net.	118 bus net.
Transient model	289.6	956.2	-	-	-
First-order dq0 model (M=1)	20.5	37.2	40.4	137	289.8
Quasi-static model (M=0)	9.8	15.6	22.4	24.6	100.4

Order of magnitude improvement in simulation run- time compared to transient models.

- מערכות אנרגיה מתקדמות חיוניות לעתיד של מדינת ישראל.
- מערכות אנרגיה מתקדמות נמצאות בחזית המחקר והפיתוח העולמי.

? איך אנחנו מסבירים את זה לתלמידים שלנו

